

OCR B Biology A-level 3.3.1 - The cellular basis of cancer and treatment

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

DOfSPMTEducation

Give some examples of non-communicable diseases.

Give some examples of non-communicable diseases.

- Cancer
- Cardiovascular disease
- Chronic respiratory disease
- Diabetes

Give some risk factors of non-communicable diseases.

Give some risk factors of non-communicable diseases.

Heredity, ageing, radiation, carcinogens, viruses, air pollution, lifestyle e.g. smoking.

How do tumours develop?

How do tumours develop?

Uncontrolled mitosis. Cell division is normally well controlled, however mutations can cause a problem with this mechanism.

Describe the role of proto-oncogenes.

Describe the role of proto-oncogenes.

- Control cell division
- Code for proteins that stimulate cell division

Give some examples of proto-oncogenes.

Give some examples of proto-oncogenes.

- Ras = regulates cell signals
- Myc = maintains constant expression of a certain gene

Explain how proto-oncogenes can be involved in developing cancer.

Explain how proto-oncogenes can be involved in developing cancer.

Mutation in the gene could turn it into a permanently activated oncogene. Decreased methylation or increased acetylation can cause excess transcription.

This results in uncontrolled cell division and formation of a tumour.

Describe the role of tumour-suppressor genes.

Describe the role of tumour-suppressor genes.

Code for proteins that control cell division; in particular, stopping the cell cycle when damage is detected.

Give an example of a tumour-suppressor gene.

Give an example of a tumour-suppressor gene.

p53 gene

Explain how tumour-suppressor genes can be involved in developing cancer.

Explain how tumour-suppressor genes can be involved in developing cancer.

A mutation in the gene could code for a nonfunctional protein. Increased methylation or decreased acetylation could prevent transcription.

Cells will divide uncontrollably, replicating damaged DNA and resulting in a tumour.

How has epidemiological evidence provided links between risk factors and cancers?

How has epidemiological evidence provided links between risk factors and cancers?

- Smoking \rightarrow lung cancer
- Diet \rightarrow bowel cancer
- BRCA1 gene mutation \rightarrow breast cancer

Evidence is **correlation** not causation; there may be a third variable involved.

Give methods of detecting cancer.

Give methods of detecting cancer.

- Ultrasound MRI scans
- X-rays
- Mammography
- CT scans

- PET scans
- Biopsies
- Blood tests

Give methods of treating cancer.

Give methods of treating cancer.

- Surgery to remove tumours
- **Chemotherapy** use chemicals to kill cancer cells
- Radiotherapy use radiation to kill cancer cells
- **Immunotherapy** use of the body's own immune system and introduction of antibodies
- Hormone therapy blocks hormones that may be accelerating tumour growth e.g. oestrogen

PMTEducation

What considerations must be made when conducting genetic tests for cancer?

What considerations must be made when conducting genetic tests for cancer?

Ethical = positive result would be very upsetting, problems with false-positives or false-negatives
Economic = high cost of screening

